In this project, you will use the Antares Shield Workshop on the ESP8266 module. In this Antares Shield Workshop, there are temperature, humidity (DHT11), relay, LED, and push button sensors. You will monitor the temperature and humidity with a specified interval period. The results of the data sent by the sensors can be monitored through the Antares console and displayed on the OLED. You can also send messages in the form of string data displayed on the OLED display. This data transmission process uses MQTTX software to send data to the Antares IoT Platform.
Prerequisites
The materials required follow the General Prerequisites on the previous page. If you have not prepared the requirements on that page, then you can visit the following page.
The additional materials specific to this project are as follows.
You can open the programme code in the Arduino IDE via File > Example > Antares ESP HTTP > ESP8266-Simple-Project > POST_DATA_GET_DATA_OLED.
Below is the programme code of the POST_DATA_DHT11_OLED example.
// Include necessary libraries
#include <AntaresESPMQTT.h> // Include AntaresESP8266HTTP library for Antares platform communication
#include <Adafruit_SSD1306.h> // Include Adafruit_SSD1306 library for OLED display
#include "DHT.h" // Include DHT library for temperature and humidity sensor
#define DHTPIN D1 // Define the pin connected to the DHT sensor
#define DHTTYPE DHT11 // Set the DHT sensor type as DHT11
#define ACCESSKEY "your-access-key" // Replace with your Antares account access key
#define WIFISSID "your-wifi-ssid" // Replace with your Wi-Fi SSID
#define PASSWORD "your-wifi-password" // Replace with your Wi-Fi password
#define projectName "YOUR-APPLICATION-NAME" // Antares project name
#define deviceNameSensor "YOUR-DEVICE-NAME-1" // Name of the device sending sensor data
#define deviceNameMQTT "YOUR-DEVICE-NAME-2" // Name of the device receiving data
AntaresESPMQTT antares(ACCESSKEY); // Create AntaresESP8266HTTP object
DHT dht(DHTPIN, DHTTYPE); // Create DHT object for sensor readings
#define SCREEN_WIDTH 128 // Set OLED screen width
#define SCREEN_HEIGHT 64 // Set OLED screen height
#define OLED_RESET -1 // Define OLED reset pin, not used in this case
const unsigned long interval = 5000; // Interval for sending sensor data (5 seconds)
const unsigned long interval2 = 10000; // Interval for receiving Postman data (10 seconds)
unsigned long previousMillis = 0; // Store the last time sensor data was sent
unsigned long previousMillis2 = 0; // Store the last time Postman data was received
String testData; // Store received Postman data
String lastData = ""; // Store last received Postman data
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET); // Create OLED display object
bool showSensorData = true; // Flag to control displaying sensor data
void callback(char topic[], byte payload[], unsigned int length) {
antares.get(topic, payload, length);
Serial.println("New Message!");
Serial.println("Topic: " + antares.getTopic());
Serial.println("Payload: " + antares.getPayload());
testData = antares.getString("Test");
Serial.println("Received: " + testData);
if (testData!="null")
{
if (lastData!=testData)
{
lastData=testData;
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
display.setCursor(0, 0);
display.println("Received: " + testData);
display.display();
}
}
}
void setup() {
Serial.begin(115200); // Initialize serial communication
antares.setDebug(true); // Enable debugging for Antares
antares.wifiConnection(WIFISSID, PASSWORD);
antares.setMqttServer();
antares.setCallback(callback);
dht.begin(); // Initialize DHT sensor
if (!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Initialize OLED display
Serial.println(F("SSD1306 allocation failed"));
for (;;)
;
}
display.clearDisplay(); // Clear the display buffer
display.display(); // Display the cleared buffer
}
void loop() {
/*
Check if we're still connected to the MQTT broker/server.
If disconnected, the device will try to reconnect.
*/
antares.checkMqttConnection();
// Send sensor data
if (millis() - previousMillis > interval) {
previousMillis = millis();
float hum = dht.readHumidity(); // Read humidity from DHT sensor
float temp = dht.readTemperature(); // Read temperature from DHT sensor
if (isnan(hum) || isnan(temp)) { // Check if sensor reading is valid
Serial.println("Failed to read DHT sensor!");
return;
}
// Add temperature and humidity data to the storage buffer
antares.add("temperature", temp);
antares.add("humidity", hum);
// Send data from the storage buffer to Antares
antares.publish(projectName, deviceNameSensor);
// Display temperature and humidity on OLED
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(SSD1306_WHITE);
display.setCursor(0, 0);
display.println("Temp: " + String(temp) + " *C");
display.println("Humidity: " + String(hum) + " %");
display.display();
}
// Receive and display latest data
if (millis() - previousMillis2 > interval2) {
previousMillis2 = millis();
antares.retrieveLastData(projectName,deviceNameMQTT);
}
}
3.Set WiFi Credential and Antares Credential in Program Code
Change the HTTP Protocol parameters in the following variables *ACCESSKEY, *WIFISSID, *PASSWORD, *projectName, and *deviceName. Adjust to the parameters in the Antares console.
This project requires 2 devices, namely a device to receive data from DHT11 and a device to receive data from MQTTX made in one application on the Antares console.
#define ACCESSKEY "your-access-key" // Replace with your Antares account access key
#define WIFISSID "your-wifi-ssid" // Replace with your Wi-Fi SSID
#define PASSWORD "your-wifi-password" // Replace with your Wi-Fi password
#define projectName "YOUR-APPLICATION-NAME" // Antares project name
#define deviceNameSensor "YOUR-DEVICE-NAME-1" // Name of the device sending sensor data
#define deviceNameMQTT "YOUR-DEVICE-NAME-2" // Name of the device receiving data
The *Access key parameter is obtained from your Antares account page.
The WIFISSID parameter is obtained from the name of the Wifi / Hotspot that is currently being used by you. for example in the image below.
The *PASSWORD parameter is obtained from the WiFi password you are currently using.
The parameters *projectName and *deviceName are obtained from the Application Name and Device Name that have been created in the Antares account.
4. Compile and Upload Program
Connect the ESP8266 WEMOS D1R2 with your computer and make sure the Communication Port is read.
On Windows operating systems, checking can be done via Device Manager. If your ESP8266 WEMOS D1R2 is read, the USB-Serial CH340 appears with the port adjusting the port availability (in this case it reads COM4).
Set up the ESP8266 WEMOS D1R2 board by clicking Tools > Board > esp8266 in the Arduino IDE, then make sure the one used is LOLIN (WEMOS) D1 R2 & mini. Select the port according to the communication port that is read (in this case COM4). The result will look like the following picture.
After all the setup is complete, upload the programme by pressing the arrow icon as shown below. Wait for the compile and upload process to finish.
The Tick icon on the Arduino IDE is just the verify process. Usually used to Compile the programme to find out whether there are errors or not.
The Arrow icon on the Arduino IDE is the verify and upload process. Usually used to Compile the programme as well as Flash the programme to the target board.
If the programme upload is successful, it will look like the following image.
After uploading the programme, you can view the serial monitor to debug the programme. The serial monitor icon is shown in the following image.
Set the serial baud rate to 115200 and select BothNL & CR. The result will look like the following image.
Make sure the serial baud rate matches the value defined in the programme code. If the serial baud rate is not the same between the programme code and the serial monitor, the ASCII characters will not be read properly.
5. MQTTX Software Setup
Open the MQTTX App, then select New Connection.
In order to configure MQTTX with Antares broker, adjust the Name, Host and Port as shown below, then click Connect.
If it is connected, there is a notification as shown below.
To publish to the Antares server, enter Topic and Payload in the fields in MQTTX.
Field
Value
Topic
/oneM2M/req/your-access-key/antares-cse/json
Payload
Customise your-access-key, your-application-name, and your-device-name to the names registered to your Antares account. Fill in the "Field" data and "Value" data in "con" as you wish.
In the MQTTX software, enter the Topic and Payload that you want to use. Then click Publish to send the message from MQTTX to the Antares server.
6. Sending MQTTX Messages to Antares Server
After the MQTTX software setup is complete, it's time to send the PUBLISH command. The "Test" field is filled with the string "Hello Antares" as the message that will be sent via the MQTT protocol to the Antares server.